
Dave Cassel

Implementing XQuery: Practical
Solutions to Real-World Problems

MarkLogic
Cookbook

Part 1

MarkLogic
Cookbook
MarkLogic
Cookbook
MarkLogic

Compliments of

http://www.marklogic.com

David M. Cassel

MarkLogic Cookbook
Implementing XQuery: Practical

Solutions to Real-World Problems

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-99458-0

[LSI]

MarkLogic Cookbook
by Dave Cassel

Copyright © 2017 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com/safari). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editor: Shannon Cutt
Production Editor: Kristen Brown
Copyeditor: Sonia Saruba

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

June 2017: First Edition

Revision History for the First Edition
2017-06-09: Part 1

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. MarkLogic Cook‐
book, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://oreilly.com/safari

Table of Contents

Foreword. v

Introduction. vii

1. Peak Performance. 1
Assert Query Mode 1
Fast Distinct Values 3

2. Fun with Maps. 5
Check Whether Two Maps Are Equal 5
Find the Intersection of a Sequence of Maps 6
Apply a Function to All Values in a Map 8

3. Document Security. 11
List User Permissions on a Document 11
Get Permissions with Role Names 12

4. Working with Documents. 17
Generate a Unique ID 17
Find Binary Documents 18
Find Recently Modified Binary Documents 19

5. The Task Server. 23
Cancel Active Tasks on the Task Server 23
Cancel Active and Queued Tasks on the Task Server 26

iii

6. Administration. 29
Find Hostnames in a Cluster 29
Find Current and Effective MarkLogic Versions During

Rolling Upgrade 30

iv | Table of Contents

Foreword

This book comes at MarkLogic from the opposite direction of my
own book, Inside MarkLogic Server (recently updated by Mike
Wooldridge). In my book, I aimed to describe MarkLogic’s internals:
its data model, indexing system, and operational behaviors. I made
the decision to avoid getting into how exactly to accomplish specific
goals, because to do so would have to be a book of its own.

This is that book!

In MarkLogic Cookbook, Dave documents a set of MarkLogic rec‐
ipes: ways to do common things that can be a bit too tricky to
remember without a reference by your side. This first installment
covers XQuery. Over time, this book will issue additional install‐
ments with more recipes and topics.

What you’ll find here today is:

• Getting the best performance
• Manipulating maps with the map:map data type
• Viewing security details on documents
• Managing tasks on the Task Server

We hope you enjoy it. If you have your own ideas (favorite tricks!)
that you think should be included in future installments, please send
them to recipes@marklogic.com.

— Jason Hunter
Somewhere over the Pacific Ocean

April 2017

v

mailto:recipes@marklogic.com

Introduction

MarkLogic is a powerful multi-model database platform with a very
broad set of capabilities—all designed to help you integrate data
from silos faster. It does take some time to learn how to harness that
power, though. The recipes in this book will move you along this
process faster—you can learn from others who have taken the time
to learn how to get the most out of MarkLogic, and add some of
their tools to your toolbelt.

In this, the first volume of a three-part series, we are covering
XQuery recipes. For much of MarkLogic’s history, XQuery was the
primary language used to interact with MarkLogic (more recently,
MarkLogic has added support for JavaScript). This W3C-standard
functional language is well-suited for working with hierarchical data
structures, like XML, which in turn is a descriptive medium for
describing document data.

Recipes are a useful way to distill simple solutions to common prob‐
lems—copy and paste these into MarkLogic’s Query Console or
your source code, and you’ve solved the problem. In choosing rec‐
ipes for this book, I looked for a couple of factors. First, I wanted
problems that occur with some frequency. Some problems in this
book are more common than others, but all occur often enough in
real-world situations that one of my colleagues wrote down a solu‐
tion. Second, I looked for techniques that aren’t commonly known,
such as using the fn:fold-left function when working with a
sequence of maps. Finally, some recipes require explanations that
provide insight into how to approach programming with Mark‐
Logic. Each recipe provides some combination of these factors.

vii

Developers will get the most value from these recipes and the
accompanying discussions after they’ve worked with MarkLogic for
at least a few months and built an application or two. If you’re just
getting started, I suggest spending some time on MarkLogic Univer‐
sity classes first, then come back to this material.

The recipes in this book were submitted by a variety of MarkLogic
employees: sales engineers, who demonstrate the value of Mark‐
Logic; consultants, who work with customers to build production
applications; and members of the Engineering team, who build
MarkLogic Server itself. Check http://developer.marklogic.com/
recipes for additional recipes or to suggest your own to the broader
community.

Acknowledgments
My thanks to Diane Burley, for doing the hounding necessary for
me to have a shot at my deadlines.

I’d like to thank the many members of the MarkLogic Community
who contributed recipes, including Bill Holmes, Tyler Replogle,
Jason Hunter, Paxton Hare, Geert Josten, Mark Plotnick, and Julio
Solis.

viii | Introduction

http://www.marklogic.com/training
http://www.marklogic.com/training
http://developer.marklogic.com/recipes
http://developer.marklogic.com/recipes

CHAPTER 1

Peak Performance

Many MarkLogic installations store large amounts of data, but still
provide fast searches. The key to performance is understanding how
MarkLogic works—specifically understanding query and update
modes, and the use of indexes. These two recipes help ensure you’re
getting the speed you need for your applications.

Assert Query Mode
Problem
All MarkLogic requests run in either query or update mode, based
on a static analysis of the code. The mode is important, because
query requests are able to run without locking database content.
Accidentally running in update mode is a common cause of requests
running slower than expected.

Verify that a MarkLogic statement is running in query mode.

Solution
Applies to MarkLogic versions 7 and higher
Place this snippet as early in the code path as you can to make sure it
is executed before MarkLogic spends too much time on other parts
of your request:

let $assert-query-mode as xs:unsignedLong :=
 xdmp:request-timestamp()

1

If a request that includes this line is run in update mode, then this
error will be thrown:

> XDMP-AS: (err:XPTY0004) let $assert-query-mode as
xs:unsignedLong := xdmp:request-timestamp() -- Invalid coercion:
() as xs:unsignedLong

Discussion
Sometimes MarkLogic’s static analysis may see something that trig‐
gers update mode, even if that was not the developer’s intent. The
code in this recipe will throw an exception if it is run as an update,
making it easy to notice the problem. Once this problem has been
seen, find the code that caused the statement to run as an update. If
the statement really should be running as an update, remove the
assertion. If the update can be removed or isolated into an
xdmp:invoke() call, do that to allow the statement to run as a query.
Using this function, we can specify the different-transaction
option, causing the update to be separated from the main request.

See the Transaction Type section of the Application Developer’s
Guide for more information about query or update modes.

Note that we don’t need the same approach for Server-side Java‐
Script (SJS). With SJS, there is no static analysis; the developer must
explicitly declare update mode.

It’s important to see that we can’t just call xdmp:request-
timestamp() and get the same effect. The magic is in the as
xs:unsignedLong—because that clause is present, MarkLogic will
expect the value to be an unsigned long, or convertible to one. If the
code returns the empty sequence, the conversion can’t happen, and
the error is thrown.

The name is important too, in order to be self-documenting. What
we don’t want to happen is that a developer runs into this exception
and realizes that it can be “fixed” by removing the as xs:unsigned
Long, or by changing it to as xs:unsignedLong? (making it
optional). The presence of the word assert in the name provides a
clue that we’re expecting something here, and silencing the message
would be contrary to the original developer’s intent.

What do you do if this exception gets thrown? If that’s happening,
MarkLogic sees that updates might be made. Check whether those
updates can be made in a different transaction using xdmp:invoke or

2 | Chapter 1: Peak Performance

http://docs.marklogic.com/guide/app-dev/transactions#id_40746

xdmp:invoke-function. Consider whether those updates need to be
made at all. If updates really should be part of a request, you can
remove the assertion—but make sure you aren’t locking too many
documents.

Fast Distinct Values
Problem
You want to quickly find the distinct values in a particular element
or JSON property.

Solution
Build a range index on the element or property, then call:

 let $ref :=
 (: call one of the cts:*-reference functions to create a
 reference to your index
 :)
 return cts:values($ref)

Required Index
Range index on the target element or property.

Discussion
Wanting a list of the distinct values in an element or property is a
common problem. Developers who are new to MarkLogic often
turn to fn:distinct-values(), like this:

 fn:distict-values(/content/author/full-name)

While this approach will work fine for small numbers of values, it
doesn’t scale. As written, MarkLogic will retrieve all fragments that
the /content/author/full-name path matches, put the full-name
elements into a sequence, and pass that to fn:distinct-values().
Because distinct-values expects a sequence of strings, each ele‐
ment is converted to a string. The function will then loop through
each string it was given in order to find the unique values.

Consider a database that has just 1,000 matching documents, but
just 10 distinct values. Even such a small example is enough to illus‐
trate how much effort MarkLogic has to waste by loading all 1,000
fragments to get just those 10 values. To see how many fragments

Fast Distinct Values | 3

MarkLogic would need to load to answer this query on your data,
run this in Query Console: xdmp:plan(/content/author/full-
name), substituting your XPath for /content/author/full-name.

Conversely, if a range index is available, then the work has already
been done. An element range index on full-name, or a path range
index on /content/author/full-name, will have a list of distinct
values, along with identifiers of fragments that hold the values. By
calling cts:values(), we directly access the index and don’t need to
load any of the fragments.

4 | Chapter 1: Peak Performance

CHAPTER 2

Fun with Maps

Maps (known as associative arrays in some languages) are a useful
data structure, allowing fast, key-based access to a value. MarkLogic
provides a common set of map operators, but the recipes in this
chapter make them even easier to work with.

Check Whether Two Maps Are Equal
Problem
Sometimes you need to see if two maps are equal, but don’t want to
loop through all the keys and compare them. If you do an equals
(=), you’ll get an error called XDMP-COMPARE saying “Items not
comparable.”

Solution
Applies to MarkLogic versions 7 and higher

If you serialize the map into XML, then you can use fn:deep-
equal(). Here is an example of how this can be done:

let $mapA :=
 map:new((
 map:entry("a", "aardvark"),
 map:entry("b", "badger")
))
let $mapB :=
 map:new((
 map:entry("a", "aardvark"),

5

 map:entry("b", "badger")
))
let $mapC :=
 map:new((
 map:entry("c","candidate")
))
return
 (
 (: ($mapA eq $mapB), will cause the XDMP-COMPARE error :)
 fn:deep-equal(<x>{$mapA}</x>, <x>{$mapB}</x>),
 fn:deep-equal(<x>{$mapA}</x>, <x>{$mapC}</x>)
)

Discussion
MarkLogic represents maps as XML, so:

map:new((
 map:entry("a", "aardvark"),
 map:entry("b", "badger")
))

becomes:
<map:map xmlns:map="http://marklogic.com/xdmp/map"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <map:entry key="b">
 <map:value xsi:type="xs:string">badger</map:value>
 </map:entry>
 <map:entry key="a">
 <map:value xsi:type="xs:string">aardvark</map:value>
 </map:entry>
</map:map>

With that XML representation, fn:deep-equal() is able to make the
comparison.

Find the Intersection of a Sequence of Maps
Problem
The intersection of two maps is the set of key/value pairs that are the
same in both maps. To find the intersection of two maps, you can
use the map intersection operator (*), like this: $mapA * $mapB. But
what if you have an arbitrarily long sequence of maps?

6 | Chapter 2: Fun with Maps

Solution
Applies to MarkLogic versions 7 and higher

This is where folding becomes very handy. The fn:fold-left func‐
tion applies an operation to a sequence of values:

declare function local:intersect($maps as map:map*)
as map:map* {
 fn:fold-left(
 function($left, $right) { $left * $right },
 fn:head($maps),
 fn:tail($maps)
)
};
let $mapA :=
 map:new((
 map:entry("a", "aardvark"),
 map:entry("b", "badger")
))
let $mapB :=
 map:new((
 map:entry("a", "aardvark"),
 map:entry("b", "badger"),
 map:entry("d", "duck")
))
let $mapC :=
 map:new((
 map:entry("a", "aardvark"),
 map:entry("b", "badger"),
 map:entry("c", "candidate")
))
return
 (
 local:intersect(($mapA, $mapB, $mapC))
)

The result is:
<map:map
 xmlns:map="http://marklogic.com/xdmp/map"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <map:entry key="b">
 <map:value xsi:type="xs:string">badger</map:value>
 </map:entry>
 <map:entry key="a">
 <map:value xsi:type="xs:string">aardvark</map:value>
 </map:entry>
</map:map>

Find the Intersection of a Sequence of Maps | 7

Discussion
The fn:fold-left() function applies a function to a series of val‐
ues, with the result of one operation being input to the next. For
instance:

fn:fold-left(
 function($left, $right) { $left + $right },
 1,
 (2, 3)
)

This applies the specified function to the 1 and the first item in the
sequence, 2. These are added together, producing 3. That accumula‐
ted value and the next value in the sequence are then passed to the
function. The new accumulated value becomes 3 + 3 = 6. The
sequence is empty now, so fn:fold-left is finished.

With the maps, the local:intersect() function will use the inter‐
sect operator (“*”) to combine $mapA and $mapB, then combine that
result with $mapC.

Apply a Function to All Values in a Map
Problem
Generate a new map by applying a function to each value in a map.

Solution
Applies to MarkLogic versions 7 and higher

The local:apply-to-map() function takes a function to apply to
each value, as well as a map to work on:

declare function local:apply-to-map(
 $function as xdmp:function,
 $mapIN as map:map
) as map:map
{
 map:new(
 (: Uses the simple map operator; see discussion below :)
 map:keys($mapIN) !
 map:entry(., xdmp:apply($function, map:get($mapIN, .)))
)
};

declare function local:plus-one($n)

8 | Chapter 2: Fun with Maps

http://docs.marklogic.com/guide/app-dev/hashtable#id_71045
http://docs.marklogic.com/guide/app-dev/hashtable#id_71045

{
 $n + 1
};

(: example run :)
let $map :=
 map:new((
 map:entry("foo", 1),
 map:entry("bar", 2),
 map:entry("stuff", 3),
 map:entry("nonsense", 4)
))
return local:apply-to-map(
 xdmp:function(xs:QName("local:plus-one")),
 $map
)

Discussion
In XQuery, as in a number of other languages, functions are items
that we can pass around. This allows us to set up a function that will
apply another function in some way. In this case, we’re looping
through the keys of an input map, applying the specified function to
each value.

Notice that the function returns a new map with the changed values.
It’s also possible to write a function like this that will modify the map
in place, but returning a new map is more in keeping with func‐
tional programming.

The function to be applied can do whatever you want. The key ele‐
ment is that it needs to take a single value and return a new value. In
the example, these values are simple numbers, but they could be
XML nodes, sequences, strings, or whatever your application calls
for. The key line in local:apply-to-map is:

 map:keys($mapIN) !
 map:entry(., xdmp:apply($function, map:get($mapIN, .)))

This line uses the simple map operator (!), which applies some code
to each item in a sequence. The same line can be written as a
FLWOR statement, which is equivalent, but a bit less succinct:

 for $item in map:keys($mapIN)
 return
 map:entry($item,
 xdmp:apply($function, map:get($mapIN, $item)))

With the simple map operator, the period acts as the current item.

Apply a Function to All Values in a Map | 9

https://www.w3.org/TR/xquery-30/#id-map-operator

CHAPTER 3

Document Security

MarkLogic provides a robust, role-based security model. Most of the
functions expect to work with the IDs of roles or users, but names
are much easier for humans to process. These recipes provide easier
insight into who can see what.

List User Permissions on a Document
Problem
You want a list of a particular user’s permissions on a document.

Solution
Applies to MarkLogic versions 7 and higher

The xdmp:document-get-permissions() function will get all per‐
missions, but you can narrow this down after identifying the user’s
roles:

let $roles := xdmp:user-roles("some-user")
return
 xdmp:document-get-permissions("/content/some-doc.json")
 [sec:role-id = $roles]/sec:capability/fn:string()

The result will be a sequence of permission strings from among
read, update, insert, and execute.

11

Discussion
Permissions are assigned to a document by role. Users are also
assigned roles, and through them gain access to documents.

The first step of this recipe is to gather the roles that the specified
user has. The xdmp:user-roles() function returns both the roles
that the user has been directly granted and any inherited roles.

With the roles in hand, we can retrieve all the permissions on the
target document, then use some XPath to retrieve just the ones we
are interested in.

Note that the sec namespace is available by default—you do not
need to declare it.

Get Permissions with Role Names
Problem
Get the permissions on a document, decorated with the names of
the roles.

Solution
Applies to MarkLogic versions 7 and higher
We want to get not just the IDs of the roles, but their names as well.
This requires calling sec:get-role-names(), which must be run
against the Security database. However, xdmp:document-get-
permissions() must be run against the database containing the
document about which we want the information.

import module namespace sec="http://marklogic.com/xdmp/security"
 at "/MarkLogic/security.xqy";
declare function local:dump-perms($uri)
{
 for $perm in xdmp:document-get-permissions($uri)
 let $role-name :=
 xdmp:invoke-function(
 function() {
 try {
 sec:get-role-names($perm/sec:role-id)
 }
 catch($ex) {()}
 },
 <options xmlns="xdmp:eval">

12 | Chapter 3: Document Security

 <database xmlns="http://www.w3.org/1999/xhtml">{
 xdmp:security-database()
 }</database>
 </options>
)
 return
 <role
 id="{$perm/sec:role-id}"
 name="{$role-name}"
 capability="{$perm/sec:capability}"></role>
};
local:dump-perms("/content/doc1.json")

Sample Output
(
 <role id="7054712474775191582" name="RunDMC-author"
 capability="update"></role>
 <role id="13533095337080026511" name="RunDMC-role"
 capability="read"></role>
)

Required Privileges

• http://marklogic.com/xdmp/privileges/get-role-names
• http://marklogic.com/xdmp/privileges/xdmp-invoke

Discussion
When we get permissions for a document, we typically get some‐
thing like this:

(
 <sec:permission>
 <sec:capability>read</sec:capability>
 <sec:role-id>324978243</sec:role-id>
 </sec:permission>,
 <sec:permission>
 <sec:capability>read</sec:capability>
 <sec:role-id>32493478578243</sec:role-id>
 </sec:permission>,
 <sec:permission>
 <sec:capability>update</sec:capability>
 <sec:role-id>32493478578243</sec:role-id>
 </sec:permission>
)

That provides the essential information, but to be useful to people,
we really need the role names, not just the IDs. This recipe looks up

Get Permissions with Role Names | 13

http://marklogic.com/xdmp/privileges/get-role-names
http://marklogic.com/xdmp/privileges/xdmp-invoke

the names. sec:get-role-names() gives us the role names, with the
requirement that the function be run against the Security database.
In order to do that, we’re calling xdmp:invoke-function(). We
could have used xdmp:eval() here; either function allows us to run
a block of code in a different execution context. There’s a big advan‐
tage to invoke: the function has access to the local variables, so we
don’t need to pass in the role ID to look up as an external variable, as
we would with xdmp:eval. We also avoid having code in a string,
which is generally harder to maintain.

Notice the try/catch. sec:get-role-names() will throw an error if
called with a role ID that is not in the Security database. How can
this happen?

Suppose we have a role, role-1. We insert a document, giving role-1
read and update permissions:

xquery version "1.0-ml";

xdmp:document-add-permissions(
 "/example.xml",
 (xdmp:permission("role-2", "read"),
 xdmp:permission("role-2", "update"))
)

Right now, if we run the recipe above, here’s the output we get:
<role id="3480302512589563034" name="role-2"
 capability="update"></role>
<role id="3480302512589563034" name="role-2"
 capability="read"></role>
<role id="3480302512512133719" name="role-1"
 capability="read"></role>
<role id="3480302512512133719" name="role-1"
 capability="update"></role>

Now suppose that role-1 gets deleted, due to changing security
requirements or implementation. When a role is deleted, it is
removed from all users, and the record of it is removed from the
Security database. However, the indexes are not updated to reflect
that the role no longer exists—doing so could be a very large opera‐
tion if the role had permissions on many documents. Note that this
is not a security problem, because no user has that role anymore.
However, it does mean that our document still lists permissions for
this orphaned role. If an invalid ID gets passed to sec:get-role-
names(), then the function will throw an error. This is why we have
the try/catch in place: to allow us to continue gathering information

14 | Chapter 3: Document Security

http://docs.marklogic.com/sec:get-role-names
http://docs.marklogic.com/xdmp:invoke-function
http://docs.marklogic.com/xdmp:eval

on known roles. After removing role-1, here is the result of calling
the recipe:

<role id="3480302512589563034" name="role-2"
 capability="update"></role>
<role id="3480302512589563034" name="role-2"
 capability="read"></role>
<role id="3480302512512133719" name=""
 capability="read"></role>
<role id="3480302512512133719" name=""
 capability="update"></role>

The empty name indicates an orphaned role. If we prefer to sup‐
press those results, we can add where $role-name ne "" to the
FLWOR statement. We can also use this to discover orphaned roles,
which can be cleaned up by using xdmp:document-set-
permissions() with the valid ones.

Get Permissions with Role Names | 15

http://docs.marklogic.com/xdmp:document-set-permissions
http://docs.marklogic.com/xdmp:document-set-permissions

CHAPTER 4

Working with Documents

Documents are the fundamental data structure for MarkLogic. This
chapter addresses some common problems: generating unique iden‐
tifiers for documents and finding binary documents (which can’t be
directly searched by content).

Generate a Unique ID
Problem
Generate a unique identifier for each document.

Solution
Use the built-in sem:uuid-string() function:

 xdmp:document-insert(
 "/content/" || sem:uuid-string() || ".xml",
 $new-doc
)

Discussion
This recipe generates identifiers that are unique. When generating
unique IDs, many people start with the idea that they should be
monotonically increasing numbers. While this is conceptually a rea‐
sonable thing to do, it has a hidden requirement: a single place
where the next value is stored and updated. For instance, consider
having a document that tracks the next available number. A process

17

that wants to insert a new document must create a write-lock on the
number-tracking document. Any other process wanting to insert
must wait until it can get a write-lock on that same document. This
single resource prevents MarkLogic from being able to work on
noninterfering inserts in parallel. When faced with a requirement to
generate monotonically increasing numbers for IDs, ask whether
they really need to be that, or simply be unique. Most often, the real
requirement is to be unique. The sem:uuid() and sem:uuid-
string() functions provide a fast way to accomplish that.

Another thought to consider is where to use the unique identifier. In
a database of students, each new student’s information is stored in a
document. Suppose the developer decided to use let $uri := "/
student/" || $student-name || ".xml" as the URI, where
$student-name is the student’s first and last names, joined by a
hyphen. To avoid collisions, the developer adds a <student-id> ele‐
ment, populated with sem:uuid-string(). When inserting a new
student record, the application code will need to check whether a
student already has the URI that would be built using the standard
process. If so, then the code would need to modify the URI some‐
how; perhaps by adding a “-2” to the student’s name. Of course, to
do that, the code must check whether that URI has already been
taken, and so on. A much simpler approach is to use the unique ID
in the URI, thus avoiding the concern: let $uri := "/student/"
|| sem:uuid-string() || ".xml".

Find Binary Documents
Problem
Find the URIs of binary documents.

Solution
Applies to MarkLogic versions 7 and higher

xquery version "1.0-ml";

declare namespace qry = "http://marklogic.com/cts/query";

let $binary-term :=
 xdmp:plan(/binary())//qry:term-query/qry:key/text()
return cts:uris((), (), cts:term-query($binary-term))

18 | Chapter 4: Working with Documents

Required Privileges

• http://marklogic.com/xdmp/privileges/xdmp-plan

Discussion
This recipe returns a sequence of URIs for all the binary documents
in the target database.

The implementation relies on how the /binary() XPath is inter‐
preted. xdmp:plan() tells us how MarkLogic sees a query. Part of the
result is the final plan:

<qry:final-plan xmlns:qry="http://marklogic.com/cts/query">
 <qry:and-query>
 <qry:term-query weight="0">
 <qry:key>7908746777995149422</qry:key>
 <qry:annotation>document-format(binary)</qry:annotation>
 </qry:term-query>
 </qry:and-query>
</qry:final-plan>

Notice the term-query part—in addition to storing a document,
MarkLogic stores metadata about a document, and that metadata is
queryable, too. Sometimes the trick is just figuring out how to spec‐
ify that query. In this case, we use information from xdmp:plan to
get the job done.

You might ask, “Why not just use XPath, such as /binary()?” This
would also work, but it works by retrieving the binaries themselves.
You could take it a step further with /binary() ! fn:base-uri(.)
to get just the URIs (which is what the recipe provides), but again,
this requires loading up the actual documents and doing something
with them. The beauty of the recipe is that it works on indexes.

There’s one sneaky bit with this recipe: cts:term-query isn’t a pub‐
lished function. That means you should be careful where you use it,
but for this recipe, it gets the job done.

Find Recently Modified Binary Documents
Problem
Find binary documents that have been recently modified.

Find Recently Modified Binary Documents | 19

http://marklogic.com/xdmp/privileges/xdmp-plan
http://docs.marklogic.com/xdmp:plan

Solution
Applies to MarkLogic versions 7 and higher

xquery version "1.0-ml";

declare namespace qry = "http://marklogic.com/cts/query";

let $binary-term :=
 xdmp:plan(/binary())//qry:term-query/qry:key/text()
let $query-start :=
 (fn:current-dateTime() - xs:dayTimeDuration("P1D"))
let $query-stop := fn:current-dateTime()
let $query := cts:and-query((
 cts:properties-fragment-query(
 cts:and-query((
 cts:element-range-query(
 xs:QName("prop:last-modified"), ">", $query-start),
 cts:element-range-query(
 xs:QName("prop:last-modified"), "<", $query-stop)
))
),
 cts:term-query($binary-term)
))
return (
 text{
 "Estimate:",
 xdmp:estimate(cts:search(fn:doc(), $query))
 },
 cts:uris((), ("limit=100"), $query)
)

Required Privileges

• http://marklogic.com/xdmp/privileges/xdmp-plan

Required Indexes

• "maintain last modified" must be on
• dateTime range index on prop:last-modified

Discussion
Recently modified binaries can be found if the "maintain last
modified" option on the target database is active. You must also

20 | Chapter 4: Working with Documents

http://marklogic.com/xdmp/privileges/xdmp-plan

have a dateTime range index set up on prop:last-modified, so that
the cts:element-range-query will work.

The xs:dayTimeDuration chosen for $query-start defines what
“recent” means in this case. Notice that the last-modified date is
stored in a property fragment, so this recipe uses a
cts:properties-fragment-query to look for it.

The recipe returns an estimate of the number of recently modified
binaries, as well as the URIs of the first 100. We can count on the
estimate to be accurate, as the query is targeting indexes.

Find Recently Modified Binary Documents | 21

http://docs.marklogic.com/guide/app-dev/properties#id_19516
http://docs.marklogic.com/cts:properties-fragment-query

CHAPTER 5

The Task Server

MarkLogic’s Task Server provides a way to schedule work asynchro‐
nously. By default, up to 16 tasks will run at the same time on the
standard queue, along with 16 tasks on the high-priority queue. Rec‐
ipes in this chapter show how to remove tasks from the queue,
which normally only happens if the queue is wiped by a MarkLogic
restart.

Cancel Active Tasks on the Task Server
Problem
There are active tasks being executed on the Task Server, and you’d
like to cancel some or all of them.

Solution
Applies to MarkLogic versions 7 or higher

xquery version "1.0-ml";

declare namespace hs="http://marklogic.com/xdmp/status/host";
declare namespace ss="http://marklogic.com/xdmp/status/server";

let $max-task-duration := xs:dayTimeDuration("PT7M")
let $min-retries := 2
(: set $user-ids to desired sequence of ids :)
let $user-ids := xdmp:get-current-userid()
let $compare-time := fn:current-dateTime() - $max-task-duration
for $host as xs:unsignedLong in xdmp:hosts()

23

let $task-server-id :=
 xdmp:host-status($host)//hs:task-server-id
let $requests :=
 xdmp:server-status($host, $task-server-id)//ss:request-status[
 not(xs:boolean(ss:canceled))
 (: and ss:user = 7071164300007443533 :)
 (: and ss:retry-count >= $min-retries :)
 and ss:request-text = "/some/module/uri.xqy"
 and ss:start-time < $compare-time
]
return (
 text{
 "There are currently", fn:count($requests),
 "matching requests on host", xdmp:host-name($host)
 },
 for $request in $requests
 let $request-id as xs:unsignedLong := $request/ss:request-id
 let $start as xs:dateTime := $request/ss:start-time
 return (
 text{
 $request-id, "started:", $start,
 "duration:", (fn:current-dateTime() - $start),
 if (fn:true()) then (
 xdmp:request-cancel(
 $host,
 $request/ss:server-id,
 $request-id),
 "-- cancel issued"
)
 else ()
 }
)
)

Required Privileges

• http://marklogic.com/xdmp/privileges/status
• Either of:

— http://marklogic.com/xdmp/privileges/cancel-any-request
— http://marklogic.com/xdmp/privileges/cancel-my-requests

Discussion
Under certain circumstances, it may become necessary to cancel all
the tasks on the Task Server that match a specific pattern. This may
be due to human error, such as someone performing a “re-replicate

24 | Chapter 5: The Task Server

http://marklogic.com/xdmp/privileges/status
http://marklogic.com/xdmp/privileges/cancel-any-request
http://marklogic.com/xdmp/privileges/cancel-my-requests

all documents in domain,” or due to specific conditions occurring
within a production application. Note that this recipe only cancels
tasks that are actively running. Queued tasks are not affected.

The http://marklogic.com/xdmp/privileges/status privilege is
required. The user running this script must also have either http://
marklogic.com/xdmp/privileges/cancel-my-requests (to cancel
requests running as that user) or http://marklogic.com/xdmp/
privileges/cancel-any-request (to cancel any other requests).

As written, this script uses multiple filters to only show tasks that
have been executing for over seven minutes, have already been
retried twice, and are associated with a specific module. Other crite‐
ria that may be useful include the user that the task is running
under. Also note the usage of a fixed conditional that can be toggled
to perform the xdmp:request-cancel(). This allows you to test
your query criteria iteratively until you are satisfied that you will
only cancel the desired tasks.

Below is an example of a request record returned by xdmp:server-
status. Filters can be written for any of these fields.

<request-status xmlns="http://marklogic.com/xdmp/status/server">
 <request-id>796436023172923809</request-id>
 <server-id>14409436176295478539</server-id>
 <host-id>15405276691316718307</host-id>
 <transaction-id>4091631258594104359</transaction-id>
 <canceled>false</canceled>
 <modules>11527541000394886112</modules>
 <database>17515328177061313217</database>
 <root>/</root>
 <request-kind>invoke</request-kind>
 <request-text>/</request-text>
 <update>false</update>
 <start-time>2017-03-08T15:53:22.543552Z</start-time>
 <time-limit>600</time-limit>
 <max-time-limit>3600</max-time-limit>
 <user>7071164303237443533</user>
 <trigger-depth>0</trigger-depth>
 <expanded-tree-cache-hits>0</expanded-tree-cache-hits>
 <expanded-tree-cache-misses>0</expanded-tree-cache-misses>
 <request-state>running</request-state>
 <profiling-allowed>true</profiling-allowed>
 <profiling-enabled>false</profiling-enabled>
 <debugging-allowed>true</debugging-allowed>
 <debugging-status>detached</debugging-status>
 <retry-count>0</retry-count>
</request-status>

Cancel Active Tasks on the Task Server | 25

Cancel Active and Queued Tasks on the Task
Server
Problem
You need to cancel requests that have queued on the Task Server,
without wanting to clear the entire queue or restart the host.

Solution
Applies to MarkLogic versions 7 and higher

xquery version "1.0-ml";

declare namespace hs="http://marklogic.com/xdmp/status/host";
declare namespace ss="http://marklogic.com/xdmp/status/server";

(: set debug to fn:false() to actually cancel tasks :)
let $debug := fn:true()
let $seconds-to-run as xs:integer := 3600
let $seconds-to-pause as xs:integer := 3
(: Cancel tasks running longer than: :)
let $max-task-duration := xs:dayTimeDuration("PT7M")
let $max-iterations :=
 xs:integer($seconds-to-run div $seconds-to-pause)
let $_ := xdmp:set-request-time-limit($seconds-to-run)
for $i in (1 to $max-iterations)
return (
 if ($debug) then text{"Iteration", $i, "of", $max-iterations}
 else (),
 xdmp:invoke-function(
 function () {
 for $host as xs:unsignedLong in xdmp:hosts()
 let $task-server-id :=
 xdmp:host-status($host)//hs:task-server-id
 let $compare-time :=
 fn:current-dateTime() - $max-task-duration
 for $request in
 xdmp:server-status($host, $task-server-id)
 //ss:request-status[
 not(xs:boolean(ss:canceled))
 (: and ss:user = 7071164300007443533 :)
 (: and ss:retry-count >= 2 :)
 (: and ss:request-text = "/some/module/uri.xqy" :)
 and ss:start-time < $compare-time
]
 let $request-id as xs:unsignedLong :=
 $request/ss:request-id
 return (

26 | Chapter 5: The Task Server

 if ($debug) then (
 text{
 "Cancelling request:", $request-id,
 "with duration:",
 fn:current-dateTime() -
 xs:dateTime($request/ss:start-time)
 }
) else (),
 try {
 xdmp:request-cancel(
 $host, $task-server-id, $request-id
)
 } catch ($e) { }
)
 },
 <options xmlns="xdmp:eval">
 <isolation>different-transaction</isolation>
 </options>
),
 if ($debug) then
 text{"pausing for", $seconds-to-pause, "seconds"}
 else (),
 xdmp:sleep($seconds-to-pause * 1000)
)

Required Privileges

• http://marklogic.com/xdmp/privileges/xdmp-invoke
• http://marklogic.com/xdmp/privileges/status
• Either of:

— http://marklogic.com/xdmp/privileges/xdmp-set-request-time-
limit-any

— http://marklogic.com/xdmp/privileges/xdmp-set-request-time-
limit-my

• Either of:
— http://marklogic.com/xdmp/privileges/cancel-any-request
— http://marklogic.com/xdmp/privileges/cancel-my-requests

Discussion
When we ask for status information about the Task Server, we can
find out how many tasks are queued, along with the task IDs of the
tasks that are currently running, but there’s no way to inspect the

Cancel Active and Queued Tasks on the Task Server | 27

http://marklogic.com/xdmp/privileges/xdmp-invoke
http://marklogic.com/xdmp/privileges/status
http://marklogic.com/xdmp/privileges/xdmp-set-request-time-limit-any
http://marklogic.com/xdmp/privileges/xdmp-set-request-time-limit-any
http://marklogic.com/xdmp/privileges/xdmp-set-request-time-limit-my
http://marklogic.com/xdmp/privileges/xdmp-set-request-time-limit-my
http://marklogic.com/xdmp/privileges/cancel-any-request
http://marklogic.com/xdmp/privileges/cancel-my-requests

queued tasks. We can clear the queue by restarting MarkLogic, but
often that’s not desirable. Also, we might only want to remove some
tasks from the queue. This recipe allows us to specify which tasks to
remove.

Because we can only see the running tasks, we can only cancel tasks
that have started running. This also means that if there are as many
good tasks running (ones that we want to continue running) as there
are Task Server threads (typically 16), we won’t be able to cancel any
tasks until some of the good ones finish. For example, suppose we
set some selection criteria, and among the currently running tasks
12 of them do not match those criteria. That leaves just four that we
can look at and try to cancel. During the next iteration of the loop,
those four will have been replaced by four queued tasks (if there are
some queued). If none of the 12 have finished, then we can only
cancel 4 more.

28 | Chapter 5: The Task Server

CHAPTER 6

Administration

MarkLogic takes less work to administer than many databases, but
there are still things to do. The first recipe helps out those who don’t
have admin privileges; the second helps track the progress of the
MarkLogic version 9 rolling upgrade feature.

Find Hostnames in a Cluster
Problem
Someone with access to Query Console, but not to the Admin UI,
wants to know the names of hosts in the cluster.

Solution
Applies to MarkLogic versions 7 and higher

xdmp:hosts() ! xdmp:host-name(.)

Discussion
The Admin UI provides a lot of information about a MarkLogic
cluster: configuration of the databases, application servers, groups,
and other information. It also provides a means to change all these
things. As such, access to it is limited to those who have the admin
privilege. This permits a user to do anything in MarkLogic, includ‐
ing seeing and updating any data, so this role should be held tightly
to an administration team that uses procedures to ensure mistakes
don’t happen, especially in production.

29

Query Console, on the other hand, can be much more widely avail‐
able. Developers working on a project will likely be able to use
Query Console to try out queries. Their rights will likely be limited
to what they need, but it doesn’t take much to run Query Console.

Sometimes team members may want to get the list of hostnames in a
cluster. This recipe is a simple one-liner, but very useful all the same.
xdmp:hosts() returns the IDs of all hosts in the cluster. We then
feed those values to xdmp:host-name to return the human-readable
names.

Find Current and Effective MarkLogic Versions
During Rolling Upgrade
Problem
During a rolling upgrade, some servers will have the original ver‐
sion, while others will have the new version but act as if they still
had the old. Generate a report showing which servers have which
actual and effective versions.

Solution
Applies to MarkLogic versions 8.0-7 and higher

xquery version "1.0-ml";

import module namespace admin="http://marklogic.com/xdmp/admin"
 at "/MarkLogic/admin.xqy";

declare namespace hosts = "http://marklogic.com/manage/hosts";
declare namespace http = "xdmp:http";

<hosts>
 <cluster-version>{
 admin:cluster-get-effective-version(
 admin:get-configuration()
)
 }</cluster-version>
 {
 for $id in xdmp:hosts()
 let $response :=
 xdmp:http-get(
 "http://localhost:8002/manage/v2/hosts/" || $id ||
 "?view=status&format=xml",
 <options xmlns="xdmp:http">

30 | Chapter 6: Administration

http://docs.marklogic.com/xdmp:hosts
http://docs.marklogic.com/xdmp:host-name

 <authentication method="digest">
 <username>admin</username>
 <password>admin</password>
 </authentication>
 <headers>
 <content-type>application/json</content-type>
 </headers>
 </options>)
 return
 if ($response[1]/http:code = 200) then
 <host>
 <name>{
 $response[2]/hosts:host-status/hosts:name/
 fn:string()
 }</name>
 <software-version>{
 $response[2]/hosts:host-status/hosts:version/
 fn:string()
 }</software-version>
 <effective-version>{
 $response[2]/hosts:host-status/
 hosts:effective-version/fn:string()
 }</effective-version>
 </host>
 else
 <host>
 <name>{xdmp:host-name($id)}</name>
 <code>{$response[1]/http:code/fn:string()}</code>
 </host>
 }
</hosts>

This produces output like:
<hosts>
 <cluster-version>8000600</cluster-version>
 <host>
 <name>ml3.local</name>
 <software-version>8.0-6</software-version>
 <effective-version>8000600</effective-version>
 </host>
 <host>
 <name>ml1.local</name>
 <software-version>8.0-6</software-version>
 <effective-version>8000600</effective-version>
 </host>
 <host>
 <name>ml2.local</name>
 <software-version>8.0-6</software-version>
 <effective-version>8000600</effective-version>
 </host>
</hosts>

Find Current and Effective MarkLogic Versions During Rolling Upgrade | 31

Required Privileges

• http://marklogic.com/xdmp/privileges/manage
• http://marklogic.com/xdmp/privileges/admin-module-read

Discussion
Rolling upgrades allow a single cluster to roll forward incrementally
to a new release. This is done by taking down one node at a time,
upgrading that node, and bringing it back up. When the node is
restarted, it will talk to the rest of the cluster in the lowest level of
the other nodes in the cluster. When the last server in the cluster
gets upgraded, then all nodes switch over to the new version.

To see the current state of upgrades across a cluster, we need to ask
each of the servers for some data—there’s no function we can run on
one server that will tell us the version running on another. To get the
information we want, we send a Management API request to each of
the hosts asking for current status, then extract the version informa‐
tion.

When we send the HTTP request, we get back a two-item sequence.
The first item gives details on the response itself—response code,
and so on. The second item has the content of the response. If XML
produced by the recipe has a <code> element in it, that is the HTTP
error code from the REST call.

32 | Chapter 6: Administration

http://marklogic.com/xdmp/privileges/manage
http://marklogic.com/xdmp/privileges/admin-module-read

About the Author
David Cassel is the Technical Community Manager for MarkLogic,
where he educates developers, architects, and DBAs about how to
use MarkLogic to implement data integration solutions. David has
more than 20 years experience as a developer, building applications
ranging from quick proof-of-concepts to production systems for
customers across such verticals as public sector, financial services,
medical, and telecommunications. He has also built a number of
developer productivity tools, some of which can be found on
GitHub.

Besides building applications, Dave creates and delivers educational
material in a variety of formats, including blog posts, YouTube vid‐
eos, and Meetup presentations.

	MarkLogic
	Copyright
	Table of Contents
	Foreword
	Introduction
	Acknowledgments

	Chapter 1. Peak Performance
	Assert Query Mode
	Problem
	Solution
	Discussion

	Fast Distinct Values
	Problem
	Solution
	Discussion

	Chapter 2. Fun with Maps
	Check Whether Two Maps Are Equal
	Problem
	Solution
	Discussion

	Find the Intersection of a Sequence of Maps
	Problem
	Solution
	Discussion

	Apply a Function to All Values in a Map
	Problem
	Solution
	Discussion

	Chapter 3. Document Security
	List User Permissions on a Document
	Problem
	Solution
	Discussion

	Get Permissions with Role Names
	Problem
	Solution
	Discussion

	Chapter 4. Working with Documents
	Generate a Unique ID
	Problem
	Solution
	Discussion

	Find Binary Documents
	Problem
	Solution
	Discussion

	Find Recently Modified Binary Documents
	Problem
	Solution
	Discussion

	Chapter 5. The Task Server
	Cancel Active Tasks on the Task Server
	Problem
	Solution
	Discussion

	Cancel Active and Queued Tasks on the Task Server
	Problem
	Solution
	Discussion

	Chapter 6. Administration
	Find Hostnames in a Cluster
	Problem
	Solution
	Discussion

	Find Current and Effective MarkLogic Versions During Rolling Upgrade
	Problem
	Solution
	Discussion

	About the Author

